
 

 

  
Abstract— In this paper the application of a recently introduced simple 
iterative solution of the Nonlinear Programming approach is investigated for 
the Adaptive Model Predictive Control of a strongly nonlinear dynamic 
paradigm, the Duffing oscillator. The main idea is to replace the numerically 
much more complex Reduced Gradient method in the optimization task under 
constraints when the cost function has relatively simple structure, but it does 
not allow the use of the traditional LQR controller. The suggested iterative 
solution is based on Banach’s Fixed Point Theorem that has twofold 
utilization: in approaching the solution of the optimization task, and in the 
realization of the adaptive behavior of the controller. In the presented, Julia 
language-based numerical simulations certain numerical tricks are also 
applied that were used to stabilize the run of the numerical simulations. The 
numerical examples illustrate the applicability of the suggested method for a 
wide class of cost function structures. 
 
Keywords—Nonlinear Programming, Model Predictive Control, 
Receding Horizon Controller, Adaptive Control, Fixed Point 
Transformation.  

I. INTRODUCTION 
N the Nonlinear Programming (NP) one of the practical 
approaches is the Model Predictive Controller (MPC) [1, 2], 
that traditionally works in the framework of Optimal 

Control (OC). In general, the goal of an MPC application is 
approximate tracking of a nominal system trajectory in the 
possession of the usually approximate model of the controlled 
system under simultaneous, often contradictory restrictions. In 
case of an MPC, the actual value of the control signal u is 
obtained over a discrete time grid by solving an open-loop 
control problem on the finite horizon at each sampling instant. 
Such an approach can be applied in control tasks for which 
only a very approximately known model is available, e.g. in 
life sciences [3]. In this practical approach, a cost function can 
be minimized that is a weighted sum of nonnegative 
contributions expressing penalties from various points of 
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view. The dynamics, i.e. the dynamical equations of motion of 
the controlled system mathematically are taken into 
consideration as a set of “constraint equations”, and they play 
a significant role. The cost function normally contains terms 
that depend on the tracking error, the control signal itself, and 
optionally, a separate term that gives additional weight to the 
tracking error at the terminal point of the discrete horizon.  It 
has its wide-spread applications in technical [4] and economic 
[5] as well as many other fields particularly in the control 
theory of nonlinear plants in traffic control [6], [7], chemistry 
[8], [9], life sciences-related problems [10], phenomena 
associated with web transportation systems [11] etc.  

In general, the problem is very similar to finding the local 
extremum of the action functional in Classical Mechanics. In 
fact, the use of the so obtained Hamilton-Jacobi-Bellman 
Equations in control theory as the most general approach is 
considered too complicated, and the Dynamic Programming 
(DP) applied for solving them generally needs high 
computational power [12], [13]. An alternative practical 
approach is used to tackle the problem by calculating the 
variables in the discrete points of a finite time-grid which is 
considered as a “horizon” (Nonlinear Programming (NP)). 
The traditional Receding Horizon Controller (RHC) is one of 
the practical methods [14], [15] which works to diminish the 
effects of modeling imprecisions with finite horizon lengths, in 
the consecutive horizon-length cycles [16]. The optimization 
under constraints happens by NP where Lagrange’s Reduced 
Gradient (RG) Method is implemented to proceed the 
calculation further [17]. In the special case of the Linear Time 
Invariant (LTI) system models and quadratic cost functions, 
the problem is significantly reduced: the so obtained Linear 
Quadratic Regulator (LQR) [18] technically can be realized 
over a finite horizon by solving the Riccati Differential 
Equations with a terminal condition for a matrix function that 
also influences the motion of the system state persisting to an 
initial condition. In more general cases such a clear separation 
of the variables cannot be realized, and one must work with 
Time-dependent Riccati Equations. (In the survey paper [19] 
several applications were discussed in connection with this 
problem.). The RG method can be numerically implemented 
in quite general cases. For not too substantial size of the 
problem, the MS EXCEL’s Solver Package (provided by an 
external firm Frontline Systems, Inc.) yields an exceptional 
solution in combination with a little programming effort in 
Visual Basic (VB) in the background. The problem 
conveniently can be formulated by defining functional 
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relationships between the contents of the various cells of the 
worksheets (user-defined functions can be created in VB). 
Furthermore, for the Solver, a “model” can be specified by 
giving the cell that contains the cost to be minimized, the 
location of the independent variables and the constraints in the 
worksheets, and the parameter settings of this optimization 
package. The so defined “model” can be saved somewhere in 
one of the worksheets. Following that a small program can be 
written in VB that declares the model parameters as global 
variables, reads their actual values from the worksheets, loads 
the “model” for the Solver, and for the horizons under 
consideration cyclically: 
1.     writes the relevant data into the appropriate cells 

including the nominal trajectory to be tracked, the initial 
values of the variables to be optimized, and that of the 
control forces. 

2.     calls the Solver with the options that it must stop 
optimization if the prescribed limits in the time or step 
numbers have been achieved, and keep the so obtained 
results, and  

3.     writes the optimized results in certain cells of a 
worksheet.  

In the preliminary step, the Solver attempts to find a 
common point on the constraint surfaces using the Newton-
Raphson method [20]. Following that it computes the Reduced 
Gradient (RG) by calculation the appropriate Lagrange 
Multipliers, and realizes little steps in the direction of the RG. 
The algorithm stops when the RG takes zero. At this point, the 
constraints do not allow more improvement in the cost. The 
Solver package numerically computes the gradient values, can 
automatically set the suitable step lengths. The calculation of 
the Lagrange multipliers in principle needs the calculation of a 
quadratic matrix that generally may be singular or ill-
conditioned, therefore somehow it must tackle these problems, 
too. 

It is a reasonable expectation that this complicated 
procedure can be eluded in the control of a system class in 
which a) the cost functions contain separate differentiable 
contributions for penalizing the tracking error and the too big 
control effort, and b) the mathematical form of the system’s 
model under control is ab ovo known. In this case, the 
appropriate gradients can be analytically calculated, and the 
EXCEL–VB programming background does not promise 
further suitability, especially if the RG algorithm can be 
replaced by a simpler one. This program is briefed in the next 
section. 

II. THE BASIC IDEA OF THE NONLINEAR PROGRAMMING APPROACH 

Consider the numerical approximation of the problem as 
follows. A dense enough discrete time-grid as 
{ }0 1 0 1, ,..., ,...,n n Nt t t t t t t t+= + ∆ = + ∆  is determined in which 
" "

0t  is considered the initial whereas '' ''
Nt  indicates the final 

time instant of the considered motion. Let the equation of 
motion of the controlled system be ( , )x f x u=  where mx ∈  
expresses the state variable whereas ku ∈  represents the 
control signal, which is also called the input signal, ( )0 0x x t≡  
corresponds to the initial condition of the motion that is given 
in advance. The nominal trajectory to be tracked in the given 

time-grid takes the values ( )N N
i ix t x≡ . In the control task, 

this nominal trajectory cannot be exactly realized because 
various restrictions can be prescribed using a Cost Function 

( , )C x u  in each point of the grid. The function ( , ) 0C x u ≥  
may express various, often contradictory requirements; It can 
be constructed as the sum of numerous non-negative terms 
that expediently are differentiable functions of the state 
variable and the control signal; The use of large control 
signals can be prohibited in the cost function, too, because of 
the too complicated numerical calculation process. For the last 
term at '' ''

Nt  an extra terminal condition can be prescribed that 
depends only on " "

Nx . In the Optimal Control Approach, the 
sum is minimized as: 

1

0
( , ) ( )

N

N
i

C x u F x
−

=

+∑                 (1) 

in which the last term ( )NF x  gives an extra weight to the last 

point of the trajectory. However, the cost function cannot be 
arbitrarily minimized; The dynamics of the system expressed 
by the state propagation equation must be considered as a 
constraint in the minimization. This constraint can be 
processed using the Lagrange Multipliers in the following 

manner. The time-derivative '' ''x   has an expression from the 
state propagation equation, and the numerical estimation as 

( )1 ,i i
i i

x x
f x u

t
+ −

≈
∆

. On this basis a supporting function 

called auxiliary function can be developed in which the 
Lagrange multipliers in the great majority of applications have 
clear physical meaning [17]: 

( ) ( ) ( )
1

1

0
, ,

N
T i i

i i i i i N
i

x x
C x u f x u F x

t
λ

−
+

=

 −  Φ = + − +  ∆  
∑     (2)  

This proposed auxiliary function '' ''Φ  is the function of a state 
variable of the system '' ''x , the control signal '' ''u , and the 

Lagrange Multiplier '' ''λ , i.e.  { } { } { }( ), ,x u λΦ = Φ . The 

independent variables of the problem are 

{ } { }1 1,..., , 0,...,N Nx x u − and { }10,..., n
Nλ − ∈  are the Lagrange 

multipliers. The auxiliary function '' ''Φ  obviously is 
unbounded but it has local saddle points when it has zero 
partial derivatives by its all variables. For { }1,2,..., 1k N∈ −  

we get: 
( ) ( )1 0k k k kTk k

k
k k k

C x ,u f x ,u
x x t t x

λ λΦ λ−∂ ∂∂∂
= + − − =

∂ ∂ ∆ ∆ ∂
      (3) 

for k=N: 
( )1 0NN

N N

F x
x t x

λ − ∂∂Φ
= + =

∂ ∆ ∂
                 (4) 

For { }0,1,2,..., 1l N∈ − : 

( ) ( ), ,
0l l l lT

l
l l l

C x u f x u
u u u

λ
∂ ∂∂Φ

= − =
∂ ∂ ∂

             (5) 
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and for { }0,1,..., 1j N∈ − : 

( )1 , 0j j
j j

j

x x
f x u

tλ
+ −∂Φ

= − =
∂ ∆

                  (6) 

for the given initial value '' ''
0x . Evidently (3) states that the 

reduced gradient is zero, that is the set of the 0∇Φ =  points 
contains the points where the above-detailed algorithm stops, 
(4) is associated with the terminal condition, (6) means that 
the solution must be on the hypersurface determined by the 
constraints, and (5) expresses the condition for the control 
forces. It is worth noting that in general if they exist, the local 
maximums of the cost function also satisfy the 0∇Φ =  
condition. However, in many practical applications (e.g. in 
Thermodynamics) it can be known in advance that it 
corresponds to the local minimum. The traditional approach 
considers these equations as a starting point for developing the 
LQR controller for special cost functions and model 
structures. Instead of tracking the traditional route it is 
expedient to observe that if in the variable kX ∈  all the 
independent variables of " "Φ  are collected, the function 

( ) ( ) : k kX XΨ = ∇Φ     is a ( )k ∈  dimensional vector 
function, and our goal is to drive the value of this function to 
zero from an initial point. This task evidently is in severe 
analogy with the Inverse Kinematic Task of Robots in which 
the Cartesian Workshop Coordinates ( ) lx q ∈  is the 

function of the Joint Coordinates , ,sq l s∈ ∈  , and for a 
redundant robot s l>  describe the Forward Kinematics of the 
robot arm. 

In the following section, the control for six-point-long grids 
without any special terminal cost is explained. The appropriate 
terms depend on the dynamic model of the physical system 
under control.  

In a preliminary paper tackling the same subject area [21], 
the above analogy was briefly presented by the use of the 
equations of motion of the van der Pol oscillator [22] for a 
long grid. Since this system produced very complex equations 
in the approximation using finite grid points, in the present 
case a simpler example, the Duffing oscillator [23] is 
considered that has a non-linear second-order differential 
equation used to model certain damped and driven oscillators. 
Its equation of motion is given as 

3 1 ( , , )k l bx x x x u f x x u
m m m m

= − − − + ≡             (7) 

in which u is the control force, " "x and " "x  are the state 
variables,  k is considered a kind of spring constant in the case 
of a common harmonic oscillator, l describes the coefficient 
of the third order extension and b corresponds to the viscous 
damping. For a horizon consisting of 6 grid points the first two 
ones correspond to the “initial state” of the system, i.e. the 
“initial coordinate” and the “initial velocity”, therefore the free 
variables of the optimum problem are the coordinate values x 
in grid points 3,4,5, and 6. In similar manner the control force 
values u in grid points 1,2,3 and 4 are the independent 
variables of the problem. Since the system response is the 

second time-derivative of " "x  that numerically can be 
estimated from minimum 3 grid points we have 4 Lagrange 
multipliers according to (8). 

 

3 3 4 4 5 5 6 6( ) ( ) ( ) ( )N O N O N O N O
q q q qh x x h x x h x x h x xΦ = − + − + − + − + ⋅

( ) ( ) 3
2 2

2 3 4 1 1 11 (( ) ) [ O O
u u uu

k t l th u h u h u x xh
m

u
m

λ ∆ ∆
+ + + − −⋅ + − ⋅

( )
2 2

1
2 1 3 2 1 2 22 ] [O O O O O Ot ub t k tx x x x x x

m m m
λ

∆∆ ∆
⋅ − + ⋅ − + − + − − ⋅

3
22 2

2
2 3 2 4 3 2 3( ) 2 ] [O O O O O Ot ul t b t k tx x x x x x

m m m m
λ

∆∆ ∆ ∆
⋅ − − + − + − + − ⋅

3
22

3
3 3 4 3 5 4 3 4( ) 2 ] [O O O O O O Ot ul t b tx x x x x x x

m m m
λ

∆∆ ∆
⋅ − − − + − + − + − ⋅

3
22 2

4
4 4 5 4 6 5 4( ) 2 ]O O O O O O Ot ul t k t b tx x x x x x x

m m m m
∆∆ ∆ ∆

⋅ − − − + − + −

                          (8) 
For the notation of the operative indices of the gradient the 

convention was used as follows: 

1
3
Ox

∂Φ
∇Φ =

∂
; 2

4
Ox

∂Φ
∇Φ =

∂
; 3

5
Ox

∂Φ
∇Φ =

∂
 

4
6
Ox

∂Φ
∇Φ =

∂
; 5

1u
∂Φ

∇Φ =
∂

; 6
2u

∂Φ
∇Φ =

∂
 

7
3u

∂Φ
∇Φ =

∂
; 8

4u
∂Φ

∇Φ =
∂

; 9
1λ

∂Φ
∇Φ =

∂
 

10
2λ

∂Φ
∇Φ =

∂
; 11

3λ
∂Φ

∇Φ =
∂

; 12
4λ

∂Φ
∇Φ =

∂
             (9) 

2

1 3 3 1 2 2 3
3

( ) 2N O
qO

b t k th x x
m mx

λ λ λ λ∂Φ ∆ ∆′∇Φ = = − − − − + − − ⋅
∂

 

2
2

3 3 3 3
3 Ol t b tx

m m
λ λ λ∆ ∆

⋅ + −                     (10) 

2

1 3 3 1 2 3
3

( ) [ 2] [N O
qO

b t k th x x
m mx

λ λ λ∂Φ ∆ ∆′∇Φ = = − − − + + + − − ⋅
∂

 

2
2

3 1
3 ]Ol t b tx

m m
λ∆ ∆

⋅ + −                  

(11) 
2

2 4 4 2 3 4
4

( ) [ 2] [N O
qO

b t k th x x
m mx

λ λ λ∂Φ ∆ ∆′∇Φ = = − − − + − + + − − ⋅
∂

 

2
2

4
3 1]Ol t b tx

m m
∆ ∆

⋅ + −                   (12) 

3 5 5 3 4
5

( ) [ 2]N O
qO

b th x x
mx

λ λ∂Φ ∆′∇Φ = = − − − + − +
∂

       (13) 

4 6 6 4
6

( )N O
qO h x x

x
λ∂Φ ′∇Φ = = − − −

∂
            (14) 

2
1

5 1
1

( )u
th u

u m
λ ∆∂Φ ′∇Φ = = +

∂
              (15) 
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2
2

6 2
2

( )u
th u

u m
λ ∆∂Φ ′∇Φ = = +

∂
               (16) 

2
3

7 3
3

( )u
t

h u
u m

λ ∆∂Φ ′∇Φ = = +
∂

               (17) 

2
4

8 4
4

( )u
th u

u m
λ ∆∂Φ ′∇Φ = = +

∂
               (18) 

3
22 2

1
9 1 1 2 1

1

( )O O O O t uk t l t b tx x x x
m m m mλ

∆∂Φ ∆ ∆ ∆
∇Φ = = − − − − + − ⋅

∂
 

3 2 12O O Ox x x⋅ + −                      (19) 

3
2 2

10 2 2 3 2
2

( )O O O Ok t l t b tx x x x
m m mλ

∂Φ ∆ ∆ ∆
∇Φ = = − − − − + ⋅

∂
 

2
2

4 3 22O O Ot u x x x
m

∆
⋅ − + −                  (20) 

3
2 2

11 3 3 4 3
3

( )O O O Ok t l t b tx x x x
m m mλ

∂Φ ∆ ∆ ∆
∇Φ = = − − − − + ⋅

∂
 

2
3

5 4 32O O Ot u x x x
m

∆
⋅ − + −                (21) 

3
2 2

12 4 4 5 4
4

( )O O O Ok t l t b tx x x x
m m mλ

∂Φ ∆ ∆ ∆
∇Φ = = − − − − + ⋅

∂
 

2
4

6 5 42O O Ot u x x x
m

∆
⋅ − + −                  (22) 

The second partial derivatives correspond to the matrix 
elements of the Jacobian of the problem. In the sequel only, 
the nonzero terms are detailed as follows (we used the 
symmetry properties of the second partial derivatives that 

ij jiJ J= ): 
2

1
1,1 3 3 3 3

3

6( )N O O
qO

tJ h x x x
mx

λ
∂∆Φ ∆′′= = − −
∂

              (23) 

91
1,9 9,1

1 3

1OJ J
xλ

∂∆Φ∂∆Φ
= = = = −

∂ ∂
             (24) 

101
1,10 10,1

2 3

2O

b tJ J
mxλ

∂∆Φ∂∆Φ ∆
= = = = − +

∂ ∂
         (25) 

2
2 2

1 1
1,11 11,1 3

3 3

3 O
O

k t l tJ J x
m mxλ

∂∆Φ ∂∆Φ ∆ ∆
= = = = − − + ⋅

∂ ∂
  

 1b t
m
∆

⋅ −                      (26) 

2
2

2,2 4 4 4 4
4

6( )N O O
qO

l tJ h x x x
mx

λ
∂∆Φ ∆′′= = − −
∂

         (27) 

102
2,10 10,2

2 4

1OJ J
xλ

∂∆Φ∂∆Φ
= = = −

∂ ∂
            (28) 

2 11
2,11 11,2

3 4

2O

b tJ J
mxλ

∂∆Φ ∂∆Φ ∆
= = = = − +

∂ ∂
         (29) 

2
2 2

2 12
2,12 12,2 4

4 4

3 O
O

k t l tJ J x
m mxλ

∂∆Φ ∂∆Φ ∆ ∆
= = = = − − + ⋅

∂ ∂
 

1b t
m
∆

⋅ −                       (30) 

3
3,3 5 5

5

( )N O
qOJ h x x

x
∂∆Φ ′= = −
∂

                (31) 

3 11
3,11 11,3

3 4

1OJ J
xλ

∂∆Φ ∂∆Φ
= = = = −

∂ ∂
            (32) 

3 12
3,12 12,3

4 5

2O

b tJ J
mxλ

∂∆Φ ∂∆Φ ∆
= = = = − +

∂ ∂
        (33) 

4
4,4 6 6

6

( )N O
qOJ h x x

x
∂∆Φ ′′= = −
∂

              (34) 

4 12
4,12 12,4

4 6

1OJ J
xλ

∂∆Φ ∂∆Φ
= = = = −

∂ ∂
            (35) 

2
5 5

5,9 5,9
1 3

O

tJ J
mxλ

∂∆Φ ∂∆Φ ∆
= = = =

∂ ∂
           (36) 

( )6
6,6 2

2
uJ h u

u
∂∆Φ ′′= =
∂

                    

(37) 
2

6 10
6,10 10,6

2 1

tJ J
u mλ

∂∆Φ ∂∆Φ ∆
= = = =

∂ ∂
           (38) 

( )7
7,7 3

3
uJ h u

u
∂∆Φ ′′= =
∂

                  

(39)  
2

7 11
7,11 11,7

3 3

tJ J
u mλ

∂∆Φ ∂∆Φ ∆
= = = =

∂ ∂
           (40) 

( )8
8,8 4

4
uJ h u

u
∂∆Φ ′′= =
∂

                 

(41) 
2

8 12
8,12 12,8

4 4

tJ J
u mλ

∂∆Φ ∂∆Φ ∆
= = = =

∂ ∂
          (42)  

III. CLARIFICATION OF THE ANALOGY WITH THE SOLUTION OF 
THE INVERSE KINEMATIC TASK OF ROBOTS 

In open kinematic chain, the inverse kinematic task of 
robots generally can be explained through differential 
solutions which are basically determined by a generalized 
inverse, in other words, called, pseudo-inverse of the Jacobian 
of the arm [24]. For the joint coordinates of the n DoF open 
kinematic chain ,nq n∈ ∈  is used. The array made of the 
Cartesian coordinates is denoted ,mx m∈ ∈   of the certain 
points extended with the information on the pose of certain 
components with respect to the “workshop frame”. For the 
preparation of the motion of the arm that function can be used. 

Our task is to find the system states variable “ q ” for a 
given desired position of the arm Desx which has closed form 
solutions only in special cases of the construction, for 
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example,  in the case of a PUMA-type robot [25]. According 
to the general possibility the differential solution based on the 

use of the Jacobian x
q

∂
∂

 in a function of a scalar variable

ξ ∈ where ( ) ( )( )x x qξ ξ= is considered in the equation 

j j i i
ji

i ii

dx x dq dq
J

d q d dξ ξ ξ
∂

= ≡
∂∑ ∑               (43) 

where the initial conditions as ( )ini inix xξ = and ( )iniq ξ  are 
known. In the redundant case, to choose one of the useful 
solutions, some additional idea is needed. The classical 
explanations hold some generalized inverse as e.g. the Moore-
Penrose Pseudoinverse [26], [27] that is singular in, and ill-
conditioned near the kinematic singularities of the robot arm. 
Other generalized inverses based on the Singular Value 
Decomposition (SVD) [28] are not related to cost function 
minimization. Generally, such problems generate a huge 
complication due to joint coordinate time derivatives, 
therefore, it is expedient to “tame” the original task to evade 
the numerical inconveniences e.g. in the method of Damped 
Least Squares [29]. Instead of using the traditional concept an 
alternative method in [30] has been proposed where the 
original task was transformed into a fixed point problem that 
subsequently was solved by simple iteration.  Its special 
advantage is, without using any complementary trick, its 
capability to show the stable solution automatically in and 
near the kinematic singularities. It also selects one of the 
ambiguous solutions automatically. To drive ∇Φ to zero in the 
novel RHC controller this algorithm is suggested and observed 
better results. The essence of the method is briefed below.  

In the 17th century, the idea of transformation of a given 
task into fixed point problem had been used. Gradually with 
the passage of time the usage of this approach got a broader 
attention and its solution was found through iterations, e.g. 
Newton-Raphson Algorithm, that has many applications even 
in our days [31]. In 1922 Stefan Banach extended this way of 
thinking to quite wide problem classes [32]. According to his 
theorem, in a linear, complete metric space (i.e. the “Banach 
Space”) the sequence created by the contractive mapping 

: ,m m mψ ∈    as ( )1s sx xψ+ =  is a Cauchy Sequence 

that converges to the fixed point of ψ  defined as ( )x xψ ∗ ∗= . 
(A map is contractive if 0 1p∃ ≤ <  so that ,x y∀ elements of 

the space ( ) ( )x y p x yψ ψ− ≤ − .) In [33] the following 
transformation was used for this purpose: a real differentiable 
function ( ) :ϕ ξ     was taken with an attractive fixed 
point ( )ϕ ξ ξ∗ ∗= . It was used for the generation of a sequence 
of iterative signals as follows. Assume that we have a time 
grid, the system’s variable at time instant k is in the close 
vicinity of the appropriate nominal value kx , and from this 

point, we wish to move the system to the next grid point 
1k

Desx
+

in an iterative manner using the index '' ''i as follows:  

( )( )
( )
( )

, 1 , 1

, 1
,

, 1

,

Des
k i k i k

Des
k i k

k iDes
k i k

q A x q x

x q x
q

x q x

ϕ ξ ξ+ + ∗ ∗

+

+

 = − + − ⋅ 
−

⋅ +
−

           (44) 

 in which the Frobenius norm was used, and A is an adaptive 
parameter. For ,k iq q∗=  that provides ( ) 1

des
kx q x∗ += , (44) 

yields , 1 ,k i k iq q+ = . It means that if '' ''q∗  is the solution of our 

task, it also is the fixed point of this function. (Generally, no 
unique solution is expected.) The convergence of this 
sequence was investigated in [34] by making the first order 
Taylor series approximation of ( )ϕ ξ  in the vicinity of ξ∗  and 

that of ( )x q  around '' ''q∗ . It was found that if the real part of 

each eigenvalue of the Jacobian x
q

∂
∂

 is simultaneously positive 

or negative, an appropriate parameter A can be so chosen that 
it guarantees the convergence.  

For studying the convergence of this sequence in [35] it was 
assumed that ( ), 1

Des
k i kA x q x +−  was small in comparison with 

ξ∗  therefore, as an approximation, by the first order Taylor 
series expansion of ( )x q  around '' ''q∗ , and ( )ϕ ξ  in the 
vicinity of   ξ∗ . It can be shown that the convergence will be 
determined by the positive semidefinite matrix. The results for 
the redundant robot arms of non-quadratic Jacobians in [30] 
has been explained where instead of an original problem 

( )Desx x q=  the modified   ( ) ( ) ( )T Des TJ q x J q x q=  was 
solved. Also, the convergence will be determined by the 
positive semidefinite matrix ( ) ( )TJ q J q  that has non-
negative eigenvalues. For adaptively tracking the “optimized 
trajectory” a similar transformation into a fixed point problem 
was applied as it is briefed in the sequel. 

IV. FIXED POINT TRANSFORMATION-BASED ADAPTIVE CONTROL 
Investigations on the application of a “Fixed Point 

Transformation based adaptive control” have obtained some 
attention in the recent years. This is an alternative approach of 
the Lyapunov function-based adaptivity that seems to be usual 
in the design of controllers for nonlinear systems as e.g. robots 
from the nineties of the past century [36]- [38]. 

The main idea of transforming an adaptive control task into 
a fixed point problem has been considered in various tasks in 
the beginning of this decade [39]. According to Fig. 1 it can be 
presently illustrated for the digital control of a second order 
system as follows: by applying a proper tracking error 
feedback in the “Kinematic Block” to calculate the “Desired 
Tracking Error Damping” in case of a PD-type controller it is  

( ) ( ) ( ) ( )( ) ( ) ( )( )22Des N N Nq t q t q t q t q t q t= + Λ − + Λ −      (45) 
for a constant 0Λ >  time-exponent by the use of this signal 
the elements of the sequence of the Deformed Control Signals 

( )Defq t  are created by the function in (45); this deformed 
signal is used as the input of the available “Approximate 
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Model” of the controlled system for the calculation of the 
control force ( )Q t  that is exerted on the actually controlled 

system that generates the realized response ( )q t . (The 
symbolic integrations at the bottom of the figure are done by 
the dynamics of the controlled system in a real control 
situation, or, in the case of a simulation study, they must be 
implemented numerically.) After converging to the fixed point 
the kinematically prescribed trajectory tracking error damping 
will be precisely realized. In [16] the same control was 
implemented in an EXCEL-Solver-Visual Basic environment. 
In the present research, the same structure is used in the 
proposed adaptive RHC controller. 
 

 Fig.1:  Schematic structure of the “Fixed Point 
Transformation-based Adaptive Controller” taken from [40] 

IV. SIMULATION INVESTIGATION RESULTS 

The appropriate model parameters of the Duffing oscillator 
considered are given in Table 1. 

Parameter Exact Approximate Traj. Generators 
m kg 1.0  1.2 0.9 
k 1Nm−  100.0  120.0 90.0 
l 3Nm−  0.5  0.6 0.4 
 b 1Nsm−  1.2  1.5 0.7 

    
In the cost function the “original form” of the tracking error 

contribution was ( )
xN

N
q

x

x x
h x x

A

α
 −
 − =
 
 

, and for the 

prohibition of the too big control effort ( )
u

u
u

u
h u

A

α
 

=  
 

were 

used. For very big xα the penalty has very fast increase in the 

region N
xx x A− >  and it is very small for N

xx x A− < . 

Since for great xα  this may result in numerical difficulties, 
these power functions were “tamed” in the following manner: 
at first the cost functions were modified as 

( )
1

sgn x x
h ln M

A

α  
 = +     

, and in its 1st and 2nd time-

derivatives the function sgn(x) was considered as a classical 
function that cannot be differentiated in a single point 0x = . 
In the next steps, in the derivatives, this function was 

“softened” as ( ) xsgn x tanh
w

 ≈  
 

. The 1st and 2nd order 

derivatives of the cost function had the structure: 

1

1

x x

x

xtanh x
wx M

A Axtanh x
w M

A

α

α
  

    ′ =
           +

 
 
 

      

1xtanh
w

α −
 
 
 

                   (46a) 

( )2 1

2

1

1 1

x

x

x x

xtanh x
wM

A

x M
A x xtanh x tanh x

w wM M
A A

α

α α

α

α

−         −  
  

  ′′ = +
                     + +    
         



     

                 

 ( )

2

1
x

xtanh x
w

A

α

α

−
  

    −
 
 
 

              (46b) 

  The other control parameters we used are: 1 0uA .= , 
3 0u .α = , 01 10uB = × , where uA  used for basis, and uα  is an 

exponent for punishing the control force, uB is the weighting 
coefficient for the control force restriction in the cost function, 
and for the starting value for tuning u variable was used is 

10 0iniu .= was taken. 
The control input used for dynamic tracking is 11.0s−Λ = , 

61 0 10w . −= ×  was used for softening of the cost function near 
zero, and 0 01M .=  was used for softening the cost function 
for large costs.  

In the sequel the following essential parameters were 
varied: 2xα = corresponds to “soft tracking”, 6xα =  
corresponds to “sharp tracking”. Parameter 25 10xA −= ×  
means “strict tracking”, while 11 10xA −= ×  was used for 
“loose tracking”. The parameter in the scheme in Fig. 1 

13 10A −= − ×  corresponds to “slow dynamic tracking”, and 
03 10A = − ×  means “fast dynamic tracking”.  

In the figures depicted below, results for the “nominal”, 
“optimized”, and “realized” trajectories have been clarified 
where the correlations between them can be observed. For the 
varied parameters, similarly, the difference between the 
nominal and optimized trajectories, and the real part of the 
eigenvalues also show dissimilar situations.  

In Fig. 2 the adjustment of “fast, loose, and sharp” 
parameters, in Fig. 8 “fast, strict, and sharp” adjusted 
parameters, in Fig. 14, “slow, loose, and sharp”, whereas in 
Fig. 20 “slow, strict, and sharp” parameters adjusted for 
tracking were chosen. The conditions of trajectories in Figs. 5, 
11, 17, and 23 illustrate an assorted scenario where the 
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“optimized” and “realized” trajectories gradually track and 
meet the “nominal” one after exhibiting an initial jump, and 
the difference between “optimized” and “nominal” state 
variables is declining with an irregular shape. Similarly, 
identical shapes with minor error occurred while subtracting 
“optimized” state from “nominal” state. 

In Figs. 3, 9, 15, and 21 the gradient trajectories are 
decreasing with a consistent form, whereas in Figs. 6, 12, 18, 
and 24 such gradients decrease with an irregular and not 
consistent form. The figures are depicted below: 

 

 
 

Fig.2 The Nominal, Optimized and Realized Trajectory and Difference 
for fast, loose, and sharp tracking. 
 

 

    
Fig.3 The Norm of the Gradient:    Fig.4 The Real Part of the JTJ 
Iterations=100 for fast, loose, and    Eigenvalues for fast, loose, and 
sharp tracking.           sharp tracking. 

.  

 
Fig.5 The Nominal, Optimized, and Realized Trajectory and Difference  
for fast, loose, and soft tracking. 

       
  Fig.6 The Norm of the Gradient:     Fig.7 The Real Part of the JTJ 

Iterations=100 for fast, loose, and     Eigenvalues for fast, loose, and 
 soft tracking.          soft tracking.  

 
Fig.8 The Nominal, Optimized, and Realized Trajectory and Difference  
for fast, strict, and sharp tracking  

  
Fig.9 The Norm of the Gradient:   Fig.10 The Real Part of the 
JTJIterations=100 for fast, strict, and   Eigenvalues for fast, strict, 
andsharp tracking.         sharp tracking. 

 
Fig.11 The Nominal, Optimized, and Realized Trajectory and Difference  
for fast, strict, and soft tracking. 

   
Fig.12 The Norm of the Gradient:   Fig.13 The Real Part of the JTJ 
Iterations=100 for fast, strict, and   Eigenvalues for fast, strict, and 
soft tracking.         soft tracking. 

 
Fig.14 The Nominal, Optimized, and Realized Trajectory and Difference  
for slow, loose, and sharp tracking. 
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Fig.15 The Norm of the Gradient:   Fig.16 The Real Part of the JTJ 
Iterations=100 for slow, loose, and  Eigenvalues for slow, loose, and 
sharp tracking.         sharp tracking. 

 
Fig.17 The Nominal, Optimized, and Realized Trajectory and Difference  
for slow, loose, and soft tracking. 

   
Fig.18 The Norm of the Gradient:   Fig.19 The Real Part of the JTJ 
Iterations=100 for slow, loose, and  Eigenvalues for slow, loose, and 
soft tracking.         soft tracking. 

 
Fig.20 The Nominal, Optimized, and Realized Trajectory and Difference 
for slow, strict, and sharp tracking. 

   
Fig.21 The Norm of the Gradient:   Fig.22 The Real Part of the JTJ 
Iterations=100 for slow, strict, and   Eigenvalues for slow, strict, and 
sharp tracking.         sharp tracking. 

 

 
Fig.23 The Nominal, Optimized and Realized Trajectory and Difference  
for slow, strict, and soft tracking. 

 

  
Fig.24 The Norm of the Gradient:   Fig.25 The Real Part of the JTJ 
Iterations=100 for slow, strict, and   Eigenvalues for slow, strict, and 
sharp tracking.         sharp tracking. 
 

CONCLUSION 

As it can be seen from the simulations, the suggested 
numerical approach yielded well interpretable results. The 
observable effects of the typical parameter values qualitatively 
can be well identified and correspond to the expectations. It 
has been demonstrated, too, that the suggested approach can 
reach some suboptimal solution because the gradient of the 
auxiliary function was not driven to zero exactly. However, 
this situation can occur in the case of using the sophisticated 
Solver package when the algorithm is stopped before reaching 
the local optimum. The difficulties of the here suggested 
method reveal themselves in the fact that we have 
“analytically’ construct the elements of the gradient of the 
auxiliary function and that of the Jacobian. In the future work 
the introduction of some numerical approximation of these 
matrix elements can be considered. 
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